Trigonometry 1

1. Prove that
$$\frac{\sin\theta\tan\theta}{\tan\theta-\sin\theta} = \frac{\tan\theta+\sin\theta}{\sin\theta\tan\theta}$$

2. Given:
$$-\sqrt{3}\cos 2x + \sin 2x = R\sin (2x + \alpha)$$
, find R and α in degrees.

3. By completing the square, find the greatest and least values, as θ varies, of $\cos^2\theta - \cos\theta + 6$.

4. Solve
$$2\cos(60^{\circ} + \theta) + 2\sin(30^{\circ} + \theta) = \sqrt{3}$$
 where $-180^{\circ} < \theta < 180^{\circ}$.

5. Proof:
$$\sin(\alpha + \beta)\sin(\alpha - \beta) = \cos^2\beta - \cos^2\alpha$$
.

6. Solve the equation
$$\frac{\sqrt{5}}{2}\sec\theta - \tan\theta = 2$$
 for $0^{\circ} \le \theta \le 360^{\circ}$.

7. If
$$\tan x = 2\tan y$$
, show that $\tan(x + y) = \frac{3 \sin 2y}{3 \cos 2y - 1}$.

8. Solve
$$-\sqrt{3}\cos 2x + \sin 2x = 1$$
 for general solution in terms of degrees.

9. Prove
$$\frac{1-\sin\theta}{1+\sin\theta} \equiv (\sec\theta - \tan\theta)^2$$